Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1598-4540(Print)
ISSN : 2287-8211(Online)
Journal of Korea Game Society Vol.18 No.5 pp.83-92
DOI : http://dx.doi.org/10.7583/JKGS.2018.18.5.83

A Study on Automatic Comment Generation Using Deep Learning

Jae-yong Choi,So-yun Sung,Kyoung-chul Kim
Dept. of Game & Multimedia Engineering, Korea Polytechnic University
E-mail: ken@kpu.ac.kr
Corresponding Author: Kyoung-chul Kim (Korea Polytechnic University)

Abstract

Many studies in deep learning show results as good as human's decision in various fields. And importance of activation of online-community and SNS grows up in game industry. Even it decides whether a game can be successful or not. The purpose of this study is to construct a system which can read texts and create comments according to schedule in online-community and SNS using deep learning. Using recurrent neural network, we constructed models generating a comment and a schedule of writing comments, and made program choosing a news title and uploading the comment at twitter in calculated time automatically. This study can be applied to activating an online game community, a Q&A service, etc.

딥 러닝을 이용한 자동 댓글 생성에 관한 연구

최재용,성소윤,김경철
한국산업기술대학교 게임공학과

초록

최근 다수의 분야에서 딥 러닝을 통한 연구 성과들이 사람의 판단력에 근접하는 결과를 보여주고 있다. 그리고 게임 산업에서는 온라인 커뮤니티, SNS의 활성화가 게임 흥행 여부를 결정할 정도로 중요성이 높아지고 있다. 본 연구는 딥 러닝을 이용해 온라인 커뮤니티, SNS에서 활동할 수 있는 시스템을 구성하고, 온라인 공간에서 사람들이 작성한 텍스트를 읽고 그에 대한 반응을 생성하고 스케쥴에 따라 트위터에 올리는 것을 목표로 한다. 순환 신경망(Recurrent Neural Network)을 이용해 텍스트를 생성하고 글 작성 스케쥴을 생성하는 모델들을 구성했고, 생성한 시각에 맞춰 모델들에 뉴스 제목을 입력해 댓글을 출력 받고 트위터에 작성하는 프로그램을 구현했다. 본 연구 결과는 온라인 게임 커뮤니티 활성화, Q&A 서비스 등에 적용이 가능할 것으로 예상된다.

Figure

Table