Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1598-4540(Print)
ISSN : 2287-8211(Online)
Journal of Korea Game Society Vol.17 No.2 pp.135-144
DOI : http://dx.doi.org/10.7583/JKGS.2017.17.2.135

A Crowdsourcing-based Emotional Words Tagging Game for Building a Polarity Lexicon in Korean

Jun-Gi Kim,Shin-Jin Kang,Byung-Chull Bae

Abstract

Sentiment analysis refers to a way of analyzing the writer’s subjective opinions or feelings through text. For effective sentiment analysis, it is essential to build emotional word polarity lexicon. This paper introduces a crowdsourcing-based game that we have developed for efficiently building a polarity lexicon in Korean. First, we collected a corpus from the relating Internet communities using a crawler, and we classified them into words using the Twitter POS analyzer. These POS-tagged words are provided as a form of mobile platform based tagging game in which the players voluntarily tagged the polarities of the words, and then the result was collected into the database. So far we have tagged the polarities of about 1200 words. We expect that our research can contribute to the Korean sentiment analysis research especially in the game domain by collecting more emotional word data in the future.

초록

감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커 뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레 이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계 되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이 터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.

Figure

Table